有理数和无理数的区别是什么?无理数的定义和概念是什么?

1、有理数可以写为有限小数和无限循环小数,无理数只能写为无限不循环小数。2、所有的有理数都可以写成两个整数之比,而无理数却不能写成两

1、有理数可以写为有限小数和无限循环小数,无理数只能写为无限不循环小数。

2、所有的有理数都可以写成两个整数之比,而无理数却不能写成两个整数之比.

3、范围不同。有理数集是整数集的扩张。在有理数集内,加法、减法、乘法、除法(除数不为零)4种运算通行无阻。无理数是指实数范围内不能表示成两个整数之比的数。

4、有理数为整数(正整数、0、负整数)和分数的统称。无理数是所有不是有理数字的实数,后者是由整数的比率(或分数)构成的数字。

无理数是实数中不能精确地表示为两个整数之比的数,即无限不循环小数。 如圆周率、2的平方根等。 实数(real munber)分为有理数和无理数(irrational number) 有理数是一个整数 a 和一个非零整数 b 的比,通常写作 a/b。

包括整数和通常所说的分数,此分数亦可表示为有限小数或无限循环小数。 这一定义在数的十进制和其他进位制(如二进制)下都适用。

责任编辑:hn1007