棱台的体积公式是什么?正棱台和非正棱台的区别是什么?

棱台的体积公式是:V=1 3H(S1+S2+√S1S2)。棱台的体积取决于两底面之间的距离(棱台的高),以及原来棱锥的体积。设为棱台的高,为棱台

棱台的体积公式是:V=1/3H(S1+S2+√S1S2)。

棱台的体积取决于两底面之间的距离(棱台的高),以及原来棱锥的体积。设为棱台的高,为棱台的上下底面积,V为棱台的体积。由于棱台是由一个平面截去棱锥的一部分(也就是和原来棱锥相似的一个小棱锥)。

所以计算体积的时候,可以先算出原来棱锥的体积,再减去和它相似的小棱锥的体积。棱锥被平行于底面的平面所截时,截面的面积与底面面积的比,等于小棱锥和原棱锥的高的比的平方。假设原棱锥的高是H,那幺小棱锥的高是H-h。

斜棱住:侧棱不垂直于底面的棱柱叫做斜棱柱,画斜棱柱时,一般将侧棱画成不与底面垂直。直棱柱:侧棱垂直于底面的棱柱叫做直棱柱。画直棱柱时,应将侧棱画成与底面垂直。正棱柱:底面是正多边形的直棱柱叫做正棱柱。

性质:

1)棱柱的各个侧面都是平行四边形,所有的侧棱都平行且相等;直棱柱的各个侧面都是矩形;正棱柱的各个侧面都是全等的矩形。 2)棱柱的两个底面与平行于底面的截面是对应边互相平行的全等多边形。 3)过棱柱不相邻的两条侧棱的截面都是平行四边形。 4)直棱柱的侧棱长与高相等;直棱柱的侧面及经过不相邻的两条侧棱的截面都是矩形。

棱锥的底面和平行于底面的一个截面间的部分,叫做

棱台

正棱台的性质:  (1)正棱台的侧棱相等,侧面是全等的等腰梯形。各等腰梯形的高相等,它叫做正棱台的斜高;  (2)正棱台的两底面以及平行于底面的截面是相似正多边形;  (3)正棱台的两底面中心连线、相应的边心距和斜高组成一个直角梯形;两底面中心连线、侧棱和两底面相应的半径也组成一个直角梯形。

责任编辑:hn1007